Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Am J Physiol Renal Physiol ; 326(2): F202-F218, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059296

RESUMO

Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.


Assuntos
Angiotensina II , Transportadores de Sulfato , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Transportadores de Sulfato/genética , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Am J Physiol Renal Physiol ; 324(1): F12-F29, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264886

RESUMO

The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na+-bicarbonate cotransporter (NBCe1). Both knockout (KO) mice have spontaneous metabolic acidosis. We then determined the collecting duct phenotypic responses to this acidosis and the remodeling responses to exogenous acid loading. Despite the spontaneous acidosis in NBCe1-A KO mice, type A intercalated cells in the inner stripe of the outer medullary collecting duct (OMCDis) exhibited decreased height and reduced expression of H+-ATPase, anion exchanger 1, Rhesus B glycoprotein, and Rhesus C glycoprotein. Combined kidney-specific NBCe1-A/B deletion induced similar changes. Ultrastructural imaging showed decreased apical plasma membrane and increased vesicular H+-ATPase in OMCDis type A intercalated cell in NBCe1-A KO mice. Next, we examined the collecting duct remodeling response to acidosis. In wild-type mice, acid loading increased the proportion of type A intercalated cells in the connecting tubule (CNT) and OMCDis, and it decreased the proportion of non-A, non-B intercalated cells in the connecting tubule, and type B intercalated cells in the cortical collecting duct (CCD). These changes were absent in NBCe1-A KO mice. We conclude that the collecting duct phenotypic and remodeling responses depend on proximal tubule-dependent signaling mechanisms blocked by constitutive deletion of proximal tubule NBCe1 proteins.NEW & NOTEWORTHY This study shows that the proximal tubule regulates collecting duct phenotypic and remodeling responses to acidosis.


Assuntos
Acidose , Túbulos Renais Coletores , Simportadores de Sódio-Bicarbonato , Animais , Camundongos , Acidose/genética , Acidose/metabolismo , Glicoproteínas/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos Knockout , ATPases Translocadoras de Prótons/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo
6.
Transpl Int ; 35: 10433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620675

RESUMO

Background: Hyperammonemia after lung transplantation (HALT) is a rare but serious complication with high mortality. This systematic review delineates possible etiologies of HALT and highlights successful strategies used to manage this fatal complication. Methods: Seven biomedical databases and grey literature sources were searched using keywords relevant to hyperammonemia and lung transplantation for publications between 1995 and 2020. Additionally, we retrospectively analyzed HALT cases managed at our institution between January 2016 and August 2018. Results: The systematic review resulted in 18 studies with 40 individual cases. The mean peak ammonia level was 769 µmol/L at a mean of 14.1 days post-transplant. The mortality due to HALT was 57.5%. In our cohort of 120 lung transplants performed, four cases of HALT were identified. The mean peak ammonia level was 180.5 µmol/L at a mean of 11 days after transplantation. HALT in all four patients was successfully treated using a multimodal approach with an overall mortality of 25%. Conclusion: The incidence of HALT (3.3%) in our institution is comparable to prior reports. Nonetheless, ammonia levels in our cohort were not as high as previously reported and peaked earlier. We attributed these significant differences to early recognition and prompt institution of multimodal treatment approach.


Assuntos
Hiperamonemia , Transplante de Pulmão , Amônia , Estudos de Coortes , Humanos , Hiperamonemia/etiologia , Hiperamonemia/terapia , Transplante de Pulmão/efeitos adversos , Estudos Retrospectivos
7.
Am J Physiol Renal Physiol ; 322(2): F208-F224, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001662

RESUMO

The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deletion of the A splice variant of Na+-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present. The purpose of the present study was to determine the effect of combined renal deletion of NBCe1-A and NBCe1-B on systemic and PT ammonia metabolism. We generated NBCe1-A/B deletion using Cre-loxP techniques and used Cre-negative mice as controls. As renal NBCe1-A and NBCe1-B expression is limited to the PT, Cre-positive mice had PT NBCe1-A/B deletion [PT-NBCe1-A/B knockout (KO)]. Although on a basal diet, PT-NBCe1-A/B KO mice had severe metabolic acidosis, yet urinary ammonia excretion was not changed significantly. PT-NBCe1-A/B KO decreased the expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase and increased the expression of glutamine synthetase, an ammonia-recycling enzyme, in PTs in both the cortex and OM. Exogenous acid loading increased ammonia excretion in control mice, but PT-NBCe1-A/B KO prevented any increase. PT-NBCe1-A/B KO significantly blunted acid loading-induced changes in phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase expression in PTs in both the cortex and OM. We conclude that NBCe1-B, at least in the presence of NBCe1-A deletion, contributes to PT ammonia metabolism in the OM and thereby to systemic acid-base regulation.NEW & NOTEWORTHY The results of the present study show that combined deletion of both A and B splice variants of electrogenic Na+-bicarbonate cotransporter 1 from the proximal tubule impairs acid-base homeostasis and completely blocks changes in ammonia excretion in response to acidosis, indicating that both proteins are critical to acid-base homeostasis.


Assuntos
Equilíbrio Ácido-Base , Acidose/metabolismo , Amônia/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/deficiência , Acidose/genética , Acidose/fisiopatologia , Animais , Feminino , Deleção de Genes , Predisposição Genética para Doença , Glutamato-Amônia Ligase/metabolismo , Glutaminase/metabolismo , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Simportadores de Sódio-Bicarbonato/genética
8.
Am J Physiol Renal Physiol ; 321(5): F629-F644, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605272

RESUMO

There are sex differences in renal ammonia metabolism and structure, many of which are mediated by testosterone. The goal of the present study was to determine the role of renal expression of testosterone's canonical receptor, androgen receptor (AR), in these sexual dimorphisms. We studied mice with kidney-specific AR deletion [KS-AR-knockout (KO)] generated using Cre/loxP techniques; control mice were Cre-negative littermates (wild type). In male but not female mice, KS-AR-KO increased ammonia excretion, which eliminated sex differences. Although renal structural size typically parallel ammonia excretion, KS-AR-KO decreased kidney size, cortical proximal tubule volume density, and cortical proximal tubule cell height in males-neither were altered in females and collecting duct volume density was unaltered in both sexes. Analysis of key protein involved in ammonia handling showed in male mice that KS-AR-KO increased both phosphoenolpyruvate carboxykinase (PEPCK) and Na+-K+-2Cl- cotransporter (NKCC2) expression and decreased Na+/H+ exchanger isoform 3 (NHE3) and electrogenic Na+-bicarbonate cotransporter 1 (NBCe1)-A expression. In female mice, KS-AR-KO did not alter these parameters. These effects occurred even though KS-AR-KO did not alter plasma testosterone, food intake, or serum Na+, K+, or [Formula: see text] significantly in either sex. In conclusion, AR-dependent signaling pathways in male, but not female, kidneys regulate PEPCK and NKCC2 expression and lead to the sexual differences in ammonia excretion. Opposing effects on NHE3 and NBCe1-A expression likely limit the magnitude of ammonia excretion changes. As AR is not present in the thick ascending limb, the effect of KS-AR-KO on NKCC2 expression is indirect. Finally, AR mediates the greater kidney size and proximal tubule volume density in male compared with female mice.NEW & NOTEWORTHY Sexual dimorphisms in ammonia metabolism involve androgen receptor (AR)-dependent signaling pathways in male, but not female, kidneys that lead to altered proximal tubule (PT), phosphoenolpyruvate carboxykinase, and thick ascending limb Na+-K+-2Cl- cotransporter expression. Adaptive responses in Na+/H+ exchanger 3 and electrogenic Na+-bicarbonate cotransporter 1-A expression limit the magnitude of the effect on ammonia excretion. Finally, the greater kidney size and PT volume density in male mice is the result of PT androgen signaling through AR.


Assuntos
Amônia/metabolismo , Rim/metabolismo , Receptores Androgênicos/metabolismo , Animais , Feminino , Rim/citologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Knockout , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Receptores Androgênicos/genética , Eliminação Renal , Caracteres Sexuais , Fatores Sexuais , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
9.
J Endocrinol ; 249(2): 95-112, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705345

RESUMO

Rhesus C glycoprotein (Rhcg), an ammonia transporter, is a key molecule in urinary acid excretion and is expressed mainly in the intercalated cells (ICs) of the renal collecting duct. In the present study we investigated the role of aldosterone in the regulation of Rhcg expression. In in vivo experiments using C57BL/6J mice, Western blot analysis showed that continuous subcutaneous administration of aldosterone increased the expression of Rhcg in membrane fraction of the kidney. Supplementation of potassium inhibited the effect of aldosterone on the Rhcg. Next, mice were subjected to adrenalectomy with or without administration of aldosterone, and then ad libitum 0.14 M NH4Cl containing water was given. NH4Cl load increased the expression of Rhcg in membrane fraction. Adrenalectomy decreased NH4Cl-induced Rhcg expression, which was restored by administration of aldosterone. Immunohistochemical studies revealed that NH4Cl load induced the localization of Rhcg at the apical membrane of ICs in the outer medullary collecting duct. Adrenalectomy decreased NH4Cl-induced membrane localization of Rhcg, which was restored by administration of aldosterone. For in vitro experiments, IN-IC cells, an immortalized cell line stably expressing Flag-tagged Rhcg (Rhcg-Flag), were used. Western blot analysis showed that aldosterone increased the expression of Rhcg-Flag in membrane fraction, while the increase in extracellular potassium level inhibited the effect of aldosterone. Both spironolactone and GÓ§6983, a PKC inhibitor, inhibited the expression of Rhcg-Flag in the membrane fraction. These results suggest that aldosterone regulates the membrane expression of Rhcg through the mineralocorticoid receptor and PKC pathways, which is modulated by extracellular potassium level.


Assuntos
Aldosterona/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Glicoproteínas de Membrana/metabolismo , Equilíbrio Ácido-Base , Aldosterona/administração & dosagem , Cloreto de Amônio/administração & dosagem , Compostos de Amônio/urina , Animais , Proteínas de Transporte de Cátions/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Infusões Subcutâneas , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Potássio/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Am J Physiol Renal Physiol ; 320(1): F55-F60, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308019

RESUMO

Sexual dimorphic variations are present in many aspects of biology and involve the structure and/or function of nearly every organ system. Acid-base homeostasis is critical for optimal health, and renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Recent studies have shown sex-dependent differences in renal ammonia metabolism with regard to both basal ammonia excretion and the response to an exogenous acid load. These sexual dimorphisms are associated with structural changes in the proximal tubule and the collecting duct and variations in the expression of multiple proteins involved in ammonia metabolism and transport. Studies using orchiectomy-induced testosterone deficiency and physiological testosterone replacement have shown that testosterone underlies much of the sex-dependent differences in the proximal tubule. This parallels the finding that the canonical testosterone target receptor, androgen receptor (AR), is present exclusively in the proximal tubule. Thus testosterone, possibly acting through AR activation, regulates multiple components of renal structure and ammonia metabolism. The lack of detectable AR in the remainder of the nephron and collecting duct suggests that some dimorphisms in renal structure and ammonia transporter expression are mediated through mechanisms other than direct testosterone-dependent AR activation. A better understanding of the mechanism and biological implications of sex's effect on renal structure and ammonia metabolism is critical for optimizing our ability to care for both men and women with acid-base disturbances.


Assuntos
Equilíbrio Ácido-Base , Amônia/metabolismo , Túbulos Renais Proximais/metabolismo , Testosterona/metabolismo , Animais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Receptores Androgênicos/metabolismo , Eliminação Renal , Reabsorção Renal , Caracteres Sexuais , Fatores Sexuais
11.
Am J Physiol Renal Physiol ; 318(4): F922-F935, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32116019

RESUMO

There are substantial sex differences in renal structure and ammonia metabolism that correlate with differences in expression of proteins involved in ammonia generation and transport. This study determined the role of testis-derived testosterone in these differences. We studied 4-mo-old male C57BL/6 mice 4 and 8 wk after either bilateral orchiectomy (ORCH) or sham-operated control surgery and determined the effect of testosterone replacement to reverse the effects of ORCH. Finally, we determined the cellular expression of androgen receptor (AR), testosterone's canonical target receptor. ORCH decreased kidney and proximal tubule size, and testosterone replacement reversed this effect. ORCH increased ammonia excretion in a testosterone-dependent fashion; this occurred despite similar food intake, which is the primary component of endogenous acid production. ORCH increased expression of both phosphoenolpyruvate, a major ammonia-generating protein, and Na+-K+-2Cl- cotransporter, which mediates thick ascending limb ammonia reabsorption; these changes were reversed with testosterone replacement. Orchiectomy also decreased expression of Na+/H+ exchanger isoform 3, which mediates proximal tubule ammonia secretion, in a testosterone-dependent pattern. Finally, ARs are expressed throughout the proximal tubule in both the male and female kidney. Testosterone, possibly acting through ARs, has dramatic effects on kidney and proximal tubule size and decreases ammonia excretion through its effects on several key proteins involved in ammonia metabolism.


Assuntos
Amônia/metabolismo , Terapia de Reposição Hormonal , Rim/efeitos dos fármacos , Eliminação Renal/efeitos dos fármacos , Testosterona/administração & dosagem , Animais , Feminino , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Orquiectomia , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Fatores Sexuais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Testosterona/deficiência
12.
J Sleep Res ; 29(4): e12981, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31912641

RESUMO

The prevalence and correlates of sleep apnea (SA) among Veterans with chronic kidney disease (CKD), a population at high risk of both SA and CKD, are unknown. We performed a cross-sectional analysis of 248 Veterans (18-89 years) selected only for presence of moderate to severe CKD. All participants underwent full, unattended polysomnography, measurement of renal function and a sleepiness questionnaire. Logistic regression with backward selection was used to identify predictors of prevalent SA (apnea-hypopnea index [AHI, ≥15 events/hr] and prevalent nocturnal hypoxia [NH, % of total sleep time spent at <90% oxygen saturation]). The mean age of our cohort was 73.2 ± 9.6 years, 95% were male, 78% were Caucasian and the mean body mass index (BMI) was 30.3 ± 4.8 kg/m2 . The prevalence of SA was 39%. There was no difference in daytime sleepiness among those with and without SA. In the final model, older age, higher BMI and diabetes mellitus (DM) were associated with higher odds of SA, after controlling for age, BMI, race and sex. Higher BMI, DM, unemployed/retired status, current smoking and higher serum bicarbonate level were associated with prevalent NH. To sum, SA was common among Veterans with moderate to severe CKD. Although some traditional risk factors for SA were associated with SA in this population, sleepiness did not correlate with SA. Further study is needed to validate our findings and understand how best to address the high burden of SA among Veterans with CKD.


Assuntos
Polissonografia/métodos , Insuficiência Renal Crônica/epidemiologia , Síndromes da Apneia do Sono/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , Veteranos , Adulto Jovem
13.
Am J Physiol Renal Physiol ; 318(2): F402-F421, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841393

RESUMO

Hypokalemia increases ammonia excretion and decreases K+ excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na+-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K+ control or K+-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K+-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K+ excretion during the K+-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na+ channel α-, ß-, and γ-subunits nor of H+-K+-ATPase α1- or α2-subunits correlated with changes in urinary K+. We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K+ excretion.


Assuntos
Amônia/urina , Hipopotassemia/metabolismo , Túbulos Renais Proximais/metabolismo , Potássio na Dieta/sangue , Eliminação Renal , Simportadores de Sódio-Bicarbonato/metabolismo , Acidose/genética , Acidose/metabolismo , Acidose/fisiopatologia , Aldosterona/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Glutamato-Amônia Ligase/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Hipopotassemia/genética , Hipopotassemia/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Camundongos Knockout , Fosforilação , Simportadores de Sódio-Bicarbonato/deficiência , Simportadores de Sódio-Bicarbonato/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
14.
Am J Physiol Renal Physiol ; 317(4): F890-F905, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390234

RESUMO

Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl- cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.


Assuntos
Acidose/urina , Amônia/urina , Rim/metabolismo , Acidose/patologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Feminino , Ácido Clorídrico/farmacologia , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Medula Renal/metabolismo , Medula Renal/patologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais
15.
Semin Nephrol ; 39(4): 394-405, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31300094

RESUMO

Ammonia metabolism has a critical role in acid-base homeostasis and in other cellular functions. Kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion; ammonia metabolism is the quantitatively greatest component of net acid excretion, both under basal conditions and in response to acid-base disturbances. Several recent studies have advanced our understanding substantially of the molecular mechanisms and regulation of ammonia metabolism. First, the previous paradigm that ammonia transport could be explained by passive NH3 diffusion and NH4+ trapping has been advanced by the recognition that specific transport of NH3 and of NH4+ by specific membrane proteins is critical to ammonia transport. Second, significant advances have been made in the understanding of the regulation of ammonia metabolism. Novel studies have shown that hyperkalemia directly inhibits ammonia metabolism, thereby leading to the metabolic acidosis present in type IV renal tubular acidosis. Other studies have shown that the proximal tubule protein NBCe1, specifically the A variant NBCe1-A, has a major role in regulating renal ammonia metabolism. Third, there are important sex differences in ammonia metabolism that involve structural and functional differences in the kidney. This review addresses these important aspects of ammonia metabolism and transport.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Amônia/metabolismo , Rim/metabolismo , Acidose/metabolismo , Animais , Transporte Biológico , Homeostase/fisiologia , Humanos , Hiperpotassemia/metabolismo
16.
Am J Physiol Renal Physiol ; 317(2): F489-F501, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188034

RESUMO

Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.


Assuntos
Citratos/urina , Transportadores de Ácidos Dicarboxílicos/biossíntese , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/biossíntese , Simportadores/genética , Acidose/metabolismo , Animais , Dieta , Feminino , Variação Genética , Hipopotassemia/metabolismo , Imuno-Histoquímica , Medula Renal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
J Biol Chem ; 294(18): 7231-7244, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30872403

RESUMO

Ethanol causes dysregulated muscle protein homeostasis while simultaneously causing hepatocyte injury. Because hepatocytes are the primary site for physiological disposal of ammonia, a cytotoxic cellular metabolite generated during a number of metabolic processes, we determined whether hyperammonemia aggravates ethanol-induced muscle loss. Differentiated murine C2C12 myotubes, skeletal muscle from pair-fed or ethanol-treated mice, and human patients with alcoholic cirrhosis and healthy controls were used to quantify protein synthesis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and autophagy markers. Alcohol-metabolizing enzyme expression and activity in mouse muscle and myotubes and ureagenesis in hepatocytes were quantified. Expression and regulation of the ammonia transporters, RhBG and RhCG, were quantified by real-time PCR, immunoblots, reporter assays, biotin-tagged promoter pulldown with proteomics, and loss-of-function studies. Alcohol and aldehyde dehydrogenases were expressed and active in myotubes. Ethanol exposure impaired hepatocyte ureagenesis, induced muscle RhBG expression, and elevated muscle ammonia concentrations. Simultaneous ethanol and ammonia treatment impaired protein synthesis and mTORC1 signaling and increased autophagy with a consequent decreased myotube diameter to a greater extent than either treatment alone. Ethanol treatment and withdrawal followed by ammonia exposure resulted in greater impairment in muscle signaling and protein synthesis than ammonia treatment in ethanol-naive myotubes. Of the three transcription factors that were bound to the RhBG promoter in response to ethanol and ammonia, DR1/NC2 indirectly regulated transcription of RhBG during ethanol and ammonia treatment. Direct effects of ethanol were synergistic with increased ammonia uptake in causing dysregulated skeletal muscle proteostasis and signaling perturbations with a more severe sarcopenic phenotype.


Assuntos
Amônia/metabolismo , Etanol/farmacologia , Músculo Esquelético/efeitos dos fármacos , Animais , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hiperamonemia/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Proteostase/efeitos dos fármacos , Transdução de Sinais , Ureia/metabolismo
18.
Physiol Genomics ; 51(3): 77-82, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657733

RESUMO

Clock gene dysregulation has been shown to underlie various sleep disorders and may lead to negative cardio-metabolic outcomes. However, the association between sleep apnea (SA) and core clock gene expression is unclear. We performed a cross-sectional analysis of 49 Veterans enrolled in a study of SA outcomes in veterans with chronic kidney disease, not selected for SA or sleep complaints. All participants underwent full polysomnography and next morning whole blood collection for clock gene expression. We defined SA as an apnea-hypopnea index ≥15 events/h; nocturnal hypoxemia(NH) was defined as ≥10% of total sleep time spent at <90% oxygen saturation. We used quantitative real-time PCR to compare the relative gene expression of clock genes between those with and without SA or NH. Clock genes studied were Bmal1, Ck1δ, Ck1ε, Clock, Cry1, Cry2, NPAS2, Per1, Per2, Per3, Rev-Erb-α, RORα, and Timeless. Our cohort was 90% male, mean age was 71 yr (SD 11), mean body mass index was 30 kg/m2 (SD 5); 41% had SA, and 27% had NH. Compared with those without SA, Per3 expression was reduced by 35% in SA ( P = 0.027). Compared with those without NH, NPAS2, Per1, and Rev-Erb-α expression was reduced in NH (50.4%, P = 0.027; 28.7%, P = 0.014; 31%, P = 0.040, respectively). There was no statistical difference in expression of the remaining clock genes by SA or NH status. Our findings suggest that SA or related NH and clock gene expression may be interrelated. Future study of 24 h clock gene expression in SA is needed to establish the role of clock gene regulation on the pathway between SA and cardio-metabolic outcomes.


Assuntos
Proteínas CLOCK/genética , Expressão Gênica , Síndromes da Apneia do Sono/genética , Veteranos , Idoso , Idoso de 80 Anos ou mais , Ritmo Circadiano/genética , Estudos de Coortes , Estudos Transversais , Feminino , Regulação da Expressão Gênica , Humanos , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
19.
Am J Physiol Renal Physiol ; 315(3): F417-F428, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631353

RESUMO

Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.


Assuntos
Equilíbrio Ácido-Base , Acidose/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Acidose/genética , Acidose/fisiopatologia , Animais , Western Blotting , Modelos Animais de Doenças , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos Knockout , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores de Sódio-Bicarbonato/deficiência , Simportadores de Sódio-Bicarbonato/genética
20.
Am J Physiol Renal Physiol ; 315(2): F211-F222, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561185

RESUMO

Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.


Assuntos
Amônia/metabolismo , Rim/metabolismo , Eliminação Renal , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Feminino , Regulação da Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Rim/anatomia & histologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fatores Sexuais , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...